Fundamentals of Fluid Mechanics, Advance your understanding of Fluid Mechanics in a comprehensive 15-hour course, from basic to advanced level concepts.

## Course Description

Welcome to our all-encompassing Fluid Mechanics course. In the modern world, understanding the behavior of fluids isn’t just academic â€“ it’s essential. Fluid Mechanics stands as the backbone of many engineering advancements and solutions that shape our contemporary life, from sustainable water management and advanced transportation systems to energy-efficient designs and beyond. Engineers equipped with this knowledge aren’t just advancing their careers; they’re crafting the future. With our blend of theoretical insights and practical perspectives, you’ll not only grasp the essentials but also appreciate the profound impact of Fluid Mechanics on our world.

Through a combination of theoretical concepts, practical examples, and hands-on exercises, you’ll learn about the fundamental principles of fluid mechanics. Beyond the core principles, our course is enriched with numerical challenges, practice problems, and real-world fluid mechanics engineering applications. You’ll delve into the myriad applications of fluid mechanics.

**Reference books for this course:**

- Fluid Mechanics by Yunus A. Cengel, John M. Cimbala
- Fundamentals of Fluid Mechanics, 6th Edition By Munson

COURSE OUTLINE

**Section 1: Introduction to Fluid Mechanics**

- Introduction to Fluid Mechanics
- Application Area of Fluid Mechanics
- Dimensions and Importance of Dimensions and Units
- Dimensional Homogeneity and Unity with example problems
- Calculation of Dimensional Analysis
- Dimensionless Numbers (Reynolds, Bingham & Nusselt Number)
- Measures of Fluid Mass and Weight (Density, Specific Weight, Specific Gravity) and the Relation between Density and Specific Weight
- Classification of Fluid Flow (Internal and External, Compressible and Incompressible, Laminar and Turbulent, Steady and Unsteady)
- Calculation of Reynold, Bingham & Nusselt numbers (Dimensionless Numbers)

**Section 2: Nature of Fluids and Viscosity**

- Nature of Fluids (The no Slip Condition in Fluid Dynamics)
- Shear Stress in Moving Fluid, (Derivation Shear stress is directly proportional to strain rate)
- Viscosity and Fluid Types (Newtonian and Non-Newtonian Fluid)
- Shear Thickening Fluids and Shear Thinning Fluid
- Numericals Related to Newton’s Law of Viscosity (Newtonian Fluid)
- Calculation of Shear Stresses
- Velocity Profiles

**Section 3: Pressure and Buoyancy**

- Pressure (Fluid Pressure and Hydrostatic Pressure)
- Calculation of Specific Gravity
- Manometry (Piezometer, U tube manometer, Differential Monometer)
- Questions related to Monometer for pressure calculation
- Buoyancy and Steps for Solving Buoyancy Questions
- Numerical related to Buoyancy

**Section 4: Fluid Flow Rates and Bernoulli’s Equation**

- Fluid Flow Rates
- Continuity Equation
- Calculation of Fluid Flow Rate using Continuity Equation
- Commercially Available Pipe and Tubing (Steel Pipe, Steel Tubing, Copper Tubing, Ductile Iron Pipe)
- Pipe Selection Aid
- Question Calculation of Volume Flow Rate by Pipes and Tubes Table
- Determine Pipe Size and Tube Size from Tables
- Conservation of Energy (Bernoulliâ€™s Equation),
- Derivation of Bernoulliâ€™s Equation
- Interpretation of Bernoulliâ€™s Equation
- Restriction on Bernoulliâ€™s Equation
- Numerical related to Bernoulliâ€™s Equation
- Problem related to the calculation of volumetric flow rate through the nozzle using Bernoulliâ€™s Equation
- Application of Bernoulliâ€™s Equation (Tanks, Reservoirs, and Nozzles Exposed to the Atmosphere)
- Calculation of volumetric flow rate in Venturi Meter
- Torricelliâ€™s Theorem
- Questions related to Torricelliâ€™s Theorem

**Section 5: General Energy Equation and Pump Efficiency**

- General Energy Equation (Pumps, Fluid Motors, Fluid Friction, Valves, and Fittings)
- Mechanical Energy and Efficiency
- Nomenclature of Energy Losses and Addition
- Questions Related to Energy Equation
- Power Required by the Pumps
- Mechanical Efficiency of Pumps
- Numerical related to Pumps
- Calculation of Mechanical Efficiency of the Pump
- Power Delivered to Fluid Systems
- Mechanical Efficiency of Fluid
- Calculation of Power Delivered to Fluid and its Mechanical Efficiency

**Section 6: Reynolds Number and Friction Loss**

- Critical Reynolds Number
- Reynolds Number for closed non-circular cross-sections
- Hydraulic Radius for non-circular pipes
- Solving Problems using Moodyâ€™s Chart
- Calculation of Reynolds Number for non-circular pipes
- Friction Loss in non-circular cross-section
- Calculation of Friction loss using Moodyâ€™s Chart
- Energy Loss due to Friction
- Darcyâ€™s Equation
- Friction Loss in Laminar and Turbulent Flow

**Section 7:Â Energy Losses**

- Minor Losses
- Sudden Enlargement and losses due to Sudden Enlargements,
- Calculation of energy loss due to sudden enlargement
- Exit loss and calculation of energy loss due to exit loss
- Gradual Enlargement and calculation of energy loss due to gradual enlargement
- Sudden Contraction and calculation of energy loss due to sudden contraction
- Entrance Loss and calculation of energy loss due to Entrance
- Minor Losses (through Valves and Fittings) with procedure for calculation
- Resistant Coefficient for Valves & Fittings
- Calculation of all the energy loses in moving fluid

**Section 8: Flow Measurement**

- Flow Measurement
- Flow meters selection factors
- Variable head meters, Venturi, Flow Nozzle, Orifice
- Variable Area Flow Meters
- Rotameter
- Flow Rate and Velocity Measurements
- Velocity Probes
- Open Channel Flow Measurement (Weirs, Rectangle Notch, Contracted Weir, Triangle Weir)

**Section 9:Â Pumps and Cavitation**

- Positive Displacement Pumps
- Reciprocating Pumps
- Rotary Pump
- Kinetic Pump
- Self-Priming Pump
- Centrifugal Pump
- Affinity Law for centrifugal pumps
- Numerical using Affinity Law
- Manufacturer’s data for centrifugal pumps
- Effect of Impeller Size
- Power and Efficiency of Pumps
- Cavitation
- Vapor Pressure
- NPSH Margin

Join our Fluid Mechanics course and commence a profound exploration into the essentials of fluid mechanics.